Embedding of the Operator Space Oh and the Logarithmic ‘little Grothendieck Inequality’

نویسنده

  • MARIUS JUNGE
چکیده

Plan: 0. Introduction and Notation. 1. Preliminaries. 2. A logarithmic characterization of C∗-algebras with WEP. 3. Pusz/Woronowicz’ formula and the operator space OH. 4. The projection constant of the operator space OHn. 5. Norm calculations in a quotient space. 6. K-functionals associated to a states and conditional expectations. 7. Sums of free mean zero variables. 8. Appendix: Concrete realization of OH as functionals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improved logarithmic-geometric mean inequality and its application

In this short note, we present a refinement of the logarithmic-geometric mean inequality. As an application of our result, we obtain an operator inequality associated with geometric and logarithmic means.

متن کامل

Second dual space of little $alpha$-Lipschitz vector-valued operator algebras

Let $(X,d)$ be an infinite compact metric space, let $(B,parallel . parallel)$ be a unital Banach space, and take $alpha in (0,1).$ In this work, at first we define the big and little $alpha$-Lipschitz vector-valued (B-valued) operator algebras, and consider the little $alpha$-lipschitz $B$-valued operator algebra, $lip_{alpha}(X,B)$. Then we characterize its second dual space.

متن کامل

Representation of certain homogeneous Hilbertian operator spaces and applications

Following Grothendieck’s characterization of Hilbert spaces we consider operator spaces F such that both F and F ∗ completely embed into the dual of a C*-algebra. Due to Haagerup/Musat’s improved version of Pisier/Shlyakhtenko’s Grothendieck inequality for operator spaces, these spaces are quotients of subspaces of the direct sum C ⊕ R of the column and row spaces (the corresponding class being...

متن کامل

A Maurey Type Result for Operator Spaces

The little Grothendieck theorem for Banach spaces says that every bounded linear operator between C(K) and l2 is 2-summing. However, it is shown in [7] that the operator space analogue fails. Not every cb-map v : K → OH is completely 2-summing. In this paper, we show an operator space analogue of Maurey’s theorem : Every cb-map v : K → OH is (q, cb)-summing for any q > 2 and hence admits a fact...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003